If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-2x-1440=0
a = 4; b = -2; c = -1440;
Δ = b2-4ac
Δ = -22-4·4·(-1440)
Δ = 23044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23044}=\sqrt{4*5761}=\sqrt{4}*\sqrt{5761}=2\sqrt{5761}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5761}}{2*4}=\frac{2-2\sqrt{5761}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5761}}{2*4}=\frac{2+2\sqrt{5761}}{8} $
| 5/3x-4=2/x+4 | | 9x^2-12x=11 | | 3x+16x-48=2+15x | | y-(-32)=21 | | y=8E+06*4^-1.93 | | 100=3.14*25*x | | 25+x=-47 | | x-410=1015 | | 6x-(2x+7)=7x-49 | | 1x-3=14-4x | | -3|9+3x|+1=-5 | | 5x^2+x-3=44 | | 2.5-+3h=13 | | -3|9-3x|+1=-5 | | xx10+11=51 | | x(x+3)+8=3(x-1)+15 | | 3x-5=-2+14x | | 7x+3=30-4x | | -20-12v=1-13v-2v | | 16-12w=-14-18w | | -15u=-16u+14 | | -2k+2=-8-k | | 18+(5x)/8=10 | | 6b+10+9b=-10+10b | | 3x+6-6=2(10.5+3) | | 5-3y=-6y-10 | | x2=3,600 | | -4q-10=-5q | | 6xx7=18 | | 6xx7=16 | | -u-10=-3u+10 | | x/4-20=15 |